
International Multidimensional Engine Modeling User’s Group Meeting at the SAE Congress

Detroit, MI, 9 April 2018

FRESCO – an object-oriented, parallel platform for

internal combustion engine simulations

F. Perini1, R.D. Reitz1

1Engine Research Center, University of Wisconsin-Madison

Madison, WI, USA

Abstract: We present the development of FRESCO, a new, object-oriented simulation platform for multidimensional modeling of

internal combustion engines. FRESCO has an unstructured solver for field operations on body-fitted moving meshes, where all

finite-volume and parallel communications machinery is embedded. On top of that, state-of-the-art models were implemented.

Detailed chemistry is solved with a sparse analytical Jacobian chemistry solver combined with a high-dimensional, on-the-fly

dynamic adaptive chemistry method. Spray employs an enhanced blob injection and Mach-dependent drop dynamics model, the

KH-RT breakup model, an unsteady SGS flow model for near-nozzle dynamics, advanced parallel collision algorithms for grid-

independent collision probability estimations with extended outcomes, and a multicomponent vaporization model. Good parallel

scalability was seen up to 256 CPUs.

Introduction

The frontier of engine combustion technologies blends

combustion strategies in a range of increasing in-cylinder

reactivity gradients; being able to predict local turbulence,

flow and mixing for combustion development is crucial to

their success. As engine design workflows are being put

under pressure by competition from hybrid and electric

powertrains, multidimensional combustion modeling can

support and simplify the design process provided that the

right answer is produced in a reasonable amount of time for

the combustion engineer (ideally, engine simulations should

take no longer than what needed to run overnight).

We developed FRESCO with the aim to provide a robust and

accurate platform for internal combustion engine modeling,

where a solid finite-volume flow solver produces accurate

and reproducible results in a limited amount of time, and

where general tools for sprays, flames, etc. are available, so

that additional models can be developed, tested and accessed

with ease by the engine modeler.

The FRESCO platform

FRESCO (a Fast, Robust Engine Simulation COde) is

written in object-oriented Fortran: most of this coding

paradigm has been available since the Fortran 2003 standard

and as of today most Fortran compilers support it nearly

completely. We chose Modern Fortran to be able to exploit

all the best of object-oriented programming (encapsulation,

polymorphism, etc.), which is mostly useful for input/output,

settings and code maintainability, and still focus on

execution speed, both thanks to full vectorization and to a

60-year legacy of high-performance math libraries.

FRESCO employs body-fitted meshes for maximum near-

wall accuracy. An unstructured volume-of-fluid solver

includes all field operations, where the solution of the

Navier-Stokes equations (spatial operators, linear-system

solution, etc.) is performed. Scalar, vector and tensor fields

are available both as cell-centered and node-centered

(Voronoi) storage. The solution follows the successful ALE

scheme [1] where operators are split and solved partially on

a Lagrangian perspective (explicit: combustion, implicit:

momentum, energy, mass conservation), then remapped

back to the Eulerian mesh locations by means of a

conservative fluxing scheme. A staggered grid is employed

with node-centered velocity field and cell-centered scalar

fields.

Parallelism. Parallelism and domain decomposition are

embedded within the field formalism. Each CPU contains a

subset of cells, nodes, faces, edges each one defined as

interior (self-owned), boundary (in the halo surrounding the

subdomain) or ghost (globally deactivated). A recursive

domain decomposition procedure as from Figure 1 is applied

once an arbitrary cell-based CPU ownership is provided, and

corresponding vectorized list objects are generated for cells,

nodes, faces, edges.

Figure 1. Recursive subdomain definition.

1

2
Node and cell discretizations are produced by the partitioning

algorithm. Boundary nodes can be part/part

flux terms operate

through faces

Node quantities require

building Voronoi cells

Boundary cells as seen by subdomain 1

Vector flux terms are computed

along edges

The METIS and ParMETIS library are currently coupled to

FRESCO to provide accurate domain partitioning [2]. The

domain decomposition is not supervised, and self-updating

whenever the mesh topology changes (e.g., when layers of

cells are being added/removed during piston movement).

Figure 2 reports sample ParMETIS-defined domain

decompositions during a sector mesh engine simulation.

The boundary parts of each subdomain are kept always

synchronized with their owner CPUs: parallel

communications across the CPUs are only requested to

synchronize their information whenever spatial operators

have to be computed, while non-spatial operators are directly

run through both interior and boundary of each subdomain.

In order to keep the CPU time spent on MPI communications

to a minimum, inter-CPU data exchange is performed using

a data_exchange sparse matrix-based structure, which stores

vectorized lists of element data to be exchanged across CPUs

(from interior to boundary). Non-blocking MPI operations

are employed to allow for overlap between communication

and computation times.

Figure 3 reports the parallel efficiency of a full-engine

simulation of the Sandia 1.9L light-duty engine, featuring a

700k-cells mesh, run for 100 fluid cycles starting from

bottom dead center. The test was run flow-only without

spray or chemistry, which would bias the parallel efficiency

estimates. Good scalability was achieved up to 256

processors (~3k cells/CPU).

Figure 2. Self-updating domain decomposition.

Figure 3. CPU times vs. number of CPUs for a 100-timestep flow

field calculation. Parallel efficiency

Numerics. A first-order time integration approach is

employed in FRESCO, with a variable time-stepping

strategy similar to what employed in the KIVA family of

codes [2]. Second-order accurate spatial operators are

instead employed for both diffusion and advection terms in

the Navier-Stokes equations. For the gradient and Laplacian

operators, we employ both linear interpolation of face

quantities, and a least-squares based gradient reconstruction

procedure for boundary faces.

Figure 4. Square translation: quasi-second order upwind [2] vs.

FRESCO 2nd-order upwind scheme.

For the fluxing terms, we developed a second-order upwind

method with a least-squares based gradient reconstruction

method for the flux derivatives instead than the directional

derivatives employed in conventional upwind methods,

together with a vanLeer flux limiter (Figure 4).

4 8 16 32 64 128 256
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Spray

Chemistry

Advection

Diffusion

Parallel

Misc

Mesh

Moving mesh handling

Besides conventional mesh motion methods for sector and

full-engine meshes, a universal unstructured mesh

optimization and rezoning procedure is also implemented in

FRESCO [3]. This procedure produces an optimal, high-

quality mesh shape at all simulation timesteps, that does not

affect near-wall cell quality, for meshes with any

combinations of cell types and unstructured topology.

As large displacements and complex geometries interact in

engine simulations, diffusion-based methods such as those

solving a Poisson equation may fail, requiring strategies to

fix inverted cell regions. The FRESCO mesh rezoning

method is based on an optimization problem instead, where

the rezoned mesh is the solution to a global mesh quality

scalar functional:

 �� � argmin
���|�
�	,

i.e., node locations Xr subject to a boundary node

discretization Xb are sought. An ‘exponential sum’

formulation is employed for the global functional, which

provides a continuous and smooth representation for a

minimax optimization, which optimizes the whole domain

while focusing on the worse element in the set.

Tetrahedron quality measures are used for the element level,

which can model effectively unstructured meshes with

tetrahedra, hexahedra, prisms and pyramids (Figure 4). A

novel tetrahedron quality formulation, which combines

aspect ratio (rms edge length) and untangling features

(tetrahedron volume) into a same formula, is employed:

���� � ��� ��� ��∙ℓ��� ∈ !0,1% .

Figure 4. (left) tetrahedron topology. (right) Neighboring element

stencil for node-based optimization problem.

The large-scale optimization resulting from the mesh

functional is solved using a L-BFGS method [4] with proper

accelerators to exploit the functional’s gradient and Hessian

matrix symmetry, also accounting for the functions’ partial

separability properties. Figure 5 reports snapshots during the

rezoning process for a hexahedral mesh of a cylinder which

had been severely tangled initially: the optimization moves

all nodes simultaneously, to untangle all inverted cells and

bring them towards their optimal configuration in less than

10 iterations. Figure 6 instead shows selected snapshots

during a full-cycle (720-degree) simulation of a 4-valve SI

engine simulation including valve motion.

Figure 5. Untangling and optimization of an artificially untangled

hexahedral cylinder mesh.

Figure 6. Rezoning of a 4-valve engine geometry through the

engine cycle at -180, -90, -40, 0, +20, +70, +180 degrees after top

dead center.

Spray modelling

State-of-the-art spray models are employed to describe

liquid phase development with the Lagrangian-Drop

/Eulerian-Fluid (LDEF) approach: injection, dynamics,

breakup, vaporization.

e1

e2

e3









−=

−=

−=

PC

PB

PA

3

2

1

e

e

e

P

A

B

C

[]32 eee1=J

P

neighbor cell

neighbor nodes N1
N2

Nn

…

neighboring

element

Injection. The spray cloud is decomposed across the

subdomains according to a particle-in-cell principle: each

particle is owned by the CPU which owns the cell it’s

contained in; i.e., all parcels are always in the interior part

of the subdomain. At each timestep, a tracking algorithm is

queried to check if any cells has moved to the boundary part,

in which case the parallel data exchange structure for the

parcel cloud is called.

Figure 7. Schematic of spray cloud decomposition.

A fully resolved blob injection model is employed. In

general, a computational parcel contains a distribution of

droplets, characterized by an SMR value. In the resolved

blob model, the number of injected parcels is such that, at

the nozzle outlet, each computational parcel contains exactly

one liquid blob: a droplet distribution will only develop

within each computational parcel only if breakup and

collisions occur. Using this approach, for a full engine

calculation with a multiple-nozzle injector, usually a few

hundreds thousands parcels are injected during the

simulation.

Dynamics. Droplet evolution employs an unsteady gas-jet

flow model for particle transport in the under-resolved near-

nozzle region (Figure 8). In the resolved region, the particle

momentum equations are solved implicitly coupled with the

gas-phase momentum equation, using an enhanced, Mach-

dependent drop drag formulation (Figure 9). Spray breakup

features the hybrid KH-RT model of Beale and Reitz [5].

Collisions. Several binary droplet collision outcomes

(coalescence, elastic bouncing, reflexive/stretching

separation, grazing) were implemented. A deterministic

algorithm for grid-independent, radius-of-influence based

collision probability estimates was developed. Each parcel

collision volume is based on a tetrahedralization of the

droplet-in-parcel distribution, which assumes that all

droplets contained in a computational parcel are distributed

at the vertices of regular tetrahedra, as reported in Figure 10.

Figure 8. Schematic of the unsteady near-nozzle flow model.

Figure 9. Mach-dependent sphere drag formulation.

Figure 10. (left) regular tetrahedral drop-in-parcel displacement

(2d example), (right) binary collision impact parameter definition.

Figure 11. Collision eligibility method comparison.

This procedure allows for a fast parcel-parcel collision

probability estimated, which, combined with a kd-tree

partitioning of the parcel cloud space, allows for up to 2

orders of magnitude speedup in comparison with a

conventional full partner evaluation procedure (Figure 11).

Chemistry

Chemistry solver. Combustion is handled via a well-mixed

reactor approach: explicit source terms for internal energy

and species mass fractions are computed for each cell as the

result of a zero-dimensional adiabatic, constant-volume,

well-mixed reactor calculation. The SpeedCHEM package

[6-8] is employed for the time integration: using an arbitrary

large reaction mechanism, and given initial conditions, mass

and energy conservation equations for a reactive gaseous

mixture are solved:
jetΩ

Buu =

sgsuu =

Buu =

θ

 vel.particle

 vel.field

=

=

θ

u

dragF

Sρ

β

Lρ

Lθ

Sθ

relθ 0r

prpVc
rkd =

&'
()*+), � -+. / 012,+33 � 12,+3 4�2 ,5�

26�)7), � � 18:̅/ ;<+-+
)*+), = .

5�
+6�

A sparse Analytical Jacobian approach [6] is employed to

speed-up the calculation at the reactor level: using this

technology, the code exhibits almost linear CPU time scaling

with reaction mechanism size, as reported in Figure 12,

which corresponds to a speed up of up to three orders of

magnitude in comparison with the widely-adopted dense

integration approach. SpeedCHEM has been the first

package employing this technology to be openly available as

a standalone library for non-commercial purposes.

Fast exponential functions. The benefits of a sparse Jacobian

are not too large for CFD-sized reaction mechanisms of 50-

100 species most relevant for engine simulations. In these

cases as from Figure 13, the overall Jacobian sparsity may

be not larger than 50-70%, and relevant CPU time is spent

evaluating the mechanism’s kinetic functions. For all

kinetics and gas thermodynamics functions, FRESCO

employs a fast exponential/logarithm evaluation method

coupled with a high-order polynomial tabulation and

interpolation approach [9].

Figure 12. SpeedCHEM IDT calculation CPU time performance

vs. reaction mechanism size, compared with the standard dense

solver approach.

Figure 13. Mechanism sparsity patterns vs. number of species.

Figure 14. Performance and accuracy of fast exp/log computation

and storage-retrieval with piecewise polynomial reconstruction.

Performance expressed as ratios w/ corresponding quantities in the

standard setup (intrinsics exp/log, no tab/interp).

Using this approach, time for the evaluation of complex

exponential-based kinetics functions was reduced by up to

two orders of magnitude, and overall CPU time for chemical

kinetics integrations was reduced by up to -82.3% for the

mid-sized ERC multiChem mechanism (Figure 14). The

methodology also allows fast evaluation of thermodynamic

functions from the Equation of State as the polynomial

formulation allows both function value and its derivatives to

be evaluated at the same time.

Dynamic Adaptive Chemistry via PCA-based kd-tree

partitioning. Significant computational speed-up computing

chemistry source terms is achieved by simplifying the

problem at the domain level: cells with similar

thermodynamic state are grouped into homogeneous

reactors, so the number of actual chemical kinetics

integrations is reduced. We developed a new ‘Dynamic

Adaptive Chemistry’ (DAC) method which solves two

major challenges: 1) it avoids tabulation storage needs by

using an on-the-fly procedure (pressure dependency during

the engine stroke limits data re-usability). 2) fuel behavior:

user-defined species trackers or higher-level quantities like

the equivalence ratio are avoided, which limit DAC benefits

in multiple and multi-component fuel cases.

The DAC procedure implemented in FRESCO has three

stages, as in Figure 15:

1) reduce the model size, using an appropriate and fast

clustering algorithm; compute the thermodynamic

states corresponding to each cluster center;

2) solve chemical kinetics IVP at each cluster center state;

3) remap solution back to the full model.

To accurately identify homogeneous cell clusters, FRESCO

employs the full chemistry states space, with size ns+1, so

no simplification of the chemical model is needed. A new

variant of the k-means was designed to make clustering of

such large-dimensionality datasets possible, accurate and

fast. The algorithm employs recursive kd-tree structures

(Figure 16) both to generate an accurate initial partition of

the dataset, and to accelerate the k-means iterations using

nearest-neighbor constraining across the iterates [10].

Reliable temperature (εT<10K) and species mass fraction

10
1

10
2

10
3

10
4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

number of species

C
P

U
 t

im
e

[s
]

SpeedCHEM ignition delay time calculation scaling

Direct dense Jacobian

SpeedCHEM, direct sparse

SpeedCHEM, Krylov

∝ n
s

∝ n
s

3

10
1

10
2

10
3

10
4

number of species, n
s

[-]

10
-1

10
0

J
a

co
b

ia
n

 s
p

a
rs

it
y

 [
-]

ERC n-heptane

LLNL n-heptane

LLNL n-alkanes

Figure 15. Schematic reproducing the DAC procedure.

Figure 16: recursive kd-tree structure.

(εY<1e-4) bins were demonstrated to provide CPU time

reductions for chemistry of up to two orders of magnitude

regardless of reaction mechanism size.

Figure 17 reports a comparison between the full chemistry

approach and the fast kd-tree based high-dimensional

clustering method for chemistry in a 3D conventional diesel

combustion simulation in the Sandia 1.9L light-duty engine

with a 93k cells sector mesh using the ERC-PRF mechanism

(ns=47, nr=142) [11]. CPU times for chemistry were 7.03h

(clustering) vs. 24.54h (full chemistry).

Figure 17. Comparison between full-chemistry and clustering

solutions for a 3d sector CDC case.

Conclusions

We introduced FRESCO, a parallel finite-volume simulation

platform for multidimensional engine modeling written in

modern Fortran. The platform employs the object oriented

approach to hide computational machinery and numerics

within field operations, to simplify the engine modeler work.

State-of-the-art spray and chemistry models are

implemented, to approach grid independency with limited

computational demands. Good parallel scaling was

demonstrated up to 256 processors (~3k cells/cpu) for a full-

engine model simulations. The code is successfully

employed for diesel engine combustion research with full-

cycle simulations in realistic geometries.

Figure 18. FRESCO application to diesel engine modeling.

References

1. Torres D.J., Trujillo M.F., “KIVA-4: an unstructured ALE code for

compressible gas flow with sprays”, Journal of Computational Physics

219(2), 943-975, 2006.

2. Karypis G., Kumar V., “A fast and high quality multilevel scheme for

partitioning irregular graphs”, SIAM Journal on Scientific Computing

20(1), 359-392, 1998.

3. Perini F., Reitz R.D., “A universal mesh optimization and rezoning

method for Arbitrary Lagrangian-Eulerian Simulations”, Journal of

Computational Physics, under review, 2017.

4. Nocedal J., Wright S.J., “Numerical Optimization”, Springer, 2006.

5. Beale J.C., Reitz R.D., “Modeling spray atomization with the Kelvin-

Helmholtz/Rayleigh-Taylor hybrid model”, Atomization and sprays,

1999.

6. Perini F., Galligani E., Reitz R.D., "An analytical Jacobian approach to

sparse reaction kinetics for computationally efficient combustion

modelling with large reaction mechanisms", Energy&Fuels 26 (8), 4804-

4822, 2012.

7. Perini F., Galligani E., Reitz R.D., "A study of direct and Krylov iterative

solver techniques to approach linear scaling of the integration of

Chemical Kinetics with detailed combustion mechanims", Combustion

and Flame 161(5), 1180-1195, 2014.

8. Perini F., Das Adhikary B., Lim J.H., Su X., Ra Y., Wang H., Reitz R.D.,

"Improved Chemical Kinetics Numerics for the Efficient Simulation of

Advanced Combustion Strategies" , SAE Int. J. Engines 7(1):2014,

doi:10.4271/2014-01-1113.

9. Perini F., Reitz R.D., “Fast approximations of exponential and logarithm

functions combined with efficient storage/retrieval for combustion

kinetics calculations”, Combustion and Flame, under review, 2017.

10. Perini F., Reitz R.D., “A nearest-neighbor constrained, kd-tree

accelerated k-means algorithm for fast high-dimensional model

reduction, with application to engine combustion”, in preparation.

11. Ra Y., Reitz R.D., “A reduced chemical kinetic model for IC engine

combustion simulations with primary reference fuels”, Combustion and

Flame, 2008.

ω&

  

Level 1: dimension 1

Level 2: dimension 2

Level 3: dimension 1

Etc….
1

32

654

