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Abstract: We present the development of FRESCO, a new, object-oriented simulation platform for multidimensional modeling of 

internal combustion engines. FRESCO has an unstructured solver for field operations on body-fitted moving meshes, where all 

finite-volume and parallel communications machinery is embedded. On top of that, state-of-the-art models were implemented. 

Detailed chemistry is solved with a sparse analytical Jacobian chemistry solver combined with a high-dimensional, on-the-fly 

dynamic adaptive chemistry method. Spray employs an enhanced blob injection and Mach-dependent drop dynamics model, the 

KH-RT breakup model, an unsteady SGS flow model for near-nozzle dynamics, advanced parallel collision algorithms for grid-

independent collision probability estimations with extended outcomes, and a multicomponent vaporization model. Good parallel 

scalability was seen up to 256 CPUs. 

Introduction 
 
The frontier of engine combustion technologies blends 

combustion strategies in a range of increasing in-cylinder 

reactivity gradients; being able to predict local turbulence, 

flow and mixing for combustion development is crucial to 

their success. As engine design workflows are being put 

under pressure by competition from hybrid and electric 

powertrains, multidimensional combustion modeling can 

support and simplify the design process provided that the 

right answer is produced in a reasonable amount of time for 

the combustion engineer (ideally, engine simulations should 

take no longer than what needed to run overnight).  

We developed FRESCO with the aim to provide a robust and 

accurate platform for internal combustion engine modeling, 

where a solid finite-volume flow solver produces accurate 

and reproducible results in a limited amount of time, and 

where general tools for sprays, flames, etc. are available, so 

that additional models can be developed, tested and accessed 

with ease by the engine modeler.  

The FRESCO platform 
 

FRESCO (a Fast, Robust Engine Simulation COde) is 

written in object-oriented Fortran: most of this coding 

paradigm has been available since the Fortran 2003 standard 

and as of today most Fortran compilers support it nearly 

completely. We chose Modern Fortran to be able to exploit 

all the best of object-oriented programming (encapsulation, 

polymorphism, etc.), which is mostly useful for input/output, 

settings and code maintainability, and still focus on 

execution speed, both thanks to full vectorization and to a 

60-year legacy of high-performance math libraries.  

FRESCO employs body-fitted meshes for maximum near-

wall accuracy. An unstructured volume-of-fluid solver 

includes all field operations, where the solution of the 

Navier-Stokes equations (spatial operators, linear-system 

solution, etc.) is performed. Scalar, vector and tensor fields 

are available both as cell-centered and node-centered 

(Voronoi) storage. The solution follows the successful ALE 

scheme [1] where operators are split and solved partially on 

a Lagrangian perspective (explicit: combustion, implicit: 

momentum, energy, mass conservation), then remapped 

back to the Eulerian mesh locations by means of a 

conservative fluxing scheme. A staggered grid is employed 

with node-centered velocity field and cell-centered scalar 

fields.  

Parallelism. Parallelism and domain decomposition are 

embedded within the field formalism. Each CPU contains a 

subset of cells, nodes, faces, edges each one defined as 

interior (self-owned), boundary (in the halo surrounding the 

subdomain) or ghost (globally deactivated). A recursive 

domain decomposition procedure as from Figure 1 is applied 

once an arbitrary cell-based CPU ownership is provided, and 

corresponding vectorized list objects are generated for cells, 

nodes, faces, edges. 

 
Figure 1. Recursive subdomain definition. 
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The METIS and ParMETIS library are currently coupled to 

FRESCO to provide accurate domain partitioning [2]. The 

domain decomposition is not supervised, and self-updating 

whenever the mesh topology changes (e.g., when layers of 

cells are being added/removed during piston movement). 

Figure 2 reports sample ParMETIS-defined domain 

decompositions during a sector mesh engine simulation. 

The boundary parts of each subdomain are kept always 

synchronized with their owner CPUs: parallel 

communications across the CPUs are only requested to 

synchronize their information whenever spatial operators 

have to be computed, while non-spatial operators are directly 

run through both interior and boundary of each subdomain. 

In order to keep the CPU time spent on MPI communications 

to a minimum, inter-CPU data exchange is performed using 

a data_exchange sparse matrix-based structure, which stores 

vectorized lists of element data to be exchanged across CPUs 

(from interior to boundary). Non-blocking MPI operations 

are employed to allow for overlap between communication 

and computation times. 

Figure 3 reports the parallel efficiency of a full-engine 

simulation of the Sandia 1.9L light-duty engine, featuring a 

700k-cells mesh, run for 100 fluid cycles starting from 

bottom dead center. The test was run flow-only without 

spray or chemistry, which would bias the parallel efficiency 

estimates. Good scalability was achieved up to 256 

processors (~3k cells/CPU). 

 
Figure 2. Self-updating domain decomposition. 

 
Figure 3. CPU times vs. number of CPUs for a 100-timestep flow 

field calculation. Parallel efficiency 

 

Numerics. A first-order time integration approach is 

employed in FRESCO, with a variable time-stepping 

strategy similar to what employed in the KIVA family of 

codes [2]. Second-order accurate spatial operators are 

instead employed for both diffusion and advection terms in 

the Navier-Stokes equations. For the gradient and Laplacian 

operators, we employ both linear interpolation of face 

quantities, and a least-squares based gradient reconstruction 

procedure for boundary faces.  

 
Figure 4. Square translation: quasi-second order upwind [2] vs. 

FRESCO 2nd-order upwind scheme. 

For the fluxing terms, we developed a second-order upwind 

method with a least-squares based gradient reconstruction 

method for the flux derivatives instead than the directional 

derivatives employed in conventional upwind methods, 

together with a vanLeer flux limiter (Figure 4). 
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Moving mesh handling 
 
Besides conventional mesh motion methods for sector and 

full-engine meshes, a universal unstructured mesh 

optimization and rezoning procedure is also implemented in 

FRESCO [3]. This procedure produces an optimal, high-

quality mesh shape at all simulation timesteps, that does not 

affect near-wall cell quality, for meshes with any 

combinations of cell types and unstructured topology. 

 

As large displacements and complex geometries interact in 

engine simulations, diffusion-based methods such as those 

solving a Poisson equation may fail, requiring strategies to 

fix inverted cell regions. The FRESCO mesh rezoning 

method is based on an optimization problem instead, where 

the rezoned mesh is the solution to a global mesh quality 

scalar functional:  

 �� � argmin 
���|�
�	, 
 

i.e., node locations Xr subject to a boundary node 

discretization Xb are sought. An ‘exponential sum’ 

formulation is employed for the global functional, which 

provides a continuous and smooth representation for a 

minimax optimization, which optimizes the whole domain 

while focusing on the worse element in the set.  

 

Tetrahedron quality measures are used for the element level, 

which can model effectively unstructured meshes with 

tetrahedra, hexahedra, prisms and pyramids (Figure 4). A 

novel tetrahedron quality formulation, which combines 

aspect ratio (rms edge length) and untangling features 

(tetrahedron volume) into a same formula, is employed: 

 

���� � ��� ��� ��∙ℓ��� ∈ !0,1% . 

 

 
Figure 4. (left) tetrahedron topology. (right) Neighboring element 

stencil for node-based optimization problem. 

The large-scale optimization resulting from the mesh 

functional is solved using a L-BFGS method [4] with proper 

accelerators to exploit the functional’s gradient and Hessian 

matrix symmetry, also accounting for the functions’ partial 

separability properties. Figure 5 reports snapshots during the 

rezoning process for a hexahedral mesh of a cylinder which 

had been severely tangled initially: the optimization moves 

all nodes simultaneously, to untangle all inverted cells and 

bring them towards their optimal configuration in less than 

10 iterations. Figure 6 instead shows selected snapshots 

during a full-cycle (720-degree) simulation of a 4-valve SI 

engine simulation including valve motion. 

 
Figure 5. Untangling and optimization of an artificially untangled 

hexahedral cylinder mesh. 

 
Figure 6. Rezoning of a 4-valve engine geometry through the 

engine cycle at -180, -90, -40, 0, +20, +70, +180 degrees after top 

dead center. 

Spray modelling 
 

State-of-the-art spray models are employed to describe 

liquid phase development with the Lagrangian-Drop 

/Eulerian-Fluid (LDEF) approach: injection, dynamics, 

breakup, vaporization.  
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Injection. The spray cloud is decomposed across the 

subdomains according to a particle-in-cell principle: each 

particle is owned by the CPU which owns the cell it’s 

contained in; i.e., all parcels are always in the interior part 

of the subdomain. At each timestep, a tracking algorithm is 

queried to check if any cells has moved to the boundary part, 

in which case the parallel data exchange structure for the 

parcel cloud is called. 

 

 
Figure 7. Schematic of spray cloud decomposition. 

A fully resolved blob injection model is employed. In 

general, a computational parcel contains a distribution of 

droplets, characterized by an SMR value. In the resolved 

blob model, the number of injected parcels is such that, at 

the nozzle outlet, each computational parcel contains exactly 

one liquid blob: a droplet distribution will only develop 

within each computational parcel only if breakup and 

collisions occur. Using this approach, for a full engine 

calculation with a multiple-nozzle injector, usually a few 

hundreds thousands parcels are injected during the 

simulation.  

 

Dynamics. Droplet evolution employs an unsteady gas-jet 

flow model for particle transport in the under-resolved near-

nozzle region (Figure 8). In the resolved region, the particle 

momentum equations are solved implicitly coupled with the 

gas-phase momentum equation, using an enhanced, Mach-

dependent drop drag formulation (Figure 9). Spray breakup 

features the hybrid KH-RT model of Beale and Reitz [5]. 

Collisions. Several binary droplet collision outcomes 

(coalescence, elastic bouncing, reflexive/stretching 

separation, grazing) were implemented. A deterministic 

algorithm for grid-independent, radius-of-influence based 

collision probability estimates was developed. Each parcel 

collision volume is based on a tetrahedralization of the 

droplet-in-parcel distribution, which assumes that all 

droplets contained in a computational parcel are distributed 

at the vertices of regular tetrahedra, as reported in Figure 10.  

 
Figure 8. Schematic of the unsteady near-nozzle flow model. 

 
Figure 9. Mach-dependent sphere drag formulation. 

 

 
 

Figure 10. (left) regular tetrahedral drop-in-parcel displacement 

(2d example), (right) binary collision impact parameter definition.  

 

 
Figure 11. Collision eligibility method comparison. 

This procedure allows for a fast parcel-parcel collision 

probability estimated, which, combined with a kd-tree 

partitioning of the parcel cloud space, allows for up to 2 

orders of magnitude speedup in comparison with a 

conventional full partner evaluation procedure (Figure 11).  

Chemistry 
 

Chemistry solver. Combustion is handled via a well-mixed 

reactor approach: explicit source terms for internal energy 

and species mass fractions are computed for each cell as the 

result of a zero-dimensional adiabatic, constant-volume, 

well-mixed reactor calculation. The SpeedCHEM package 

[6-8] is employed for the time integration: using an arbitrary 

large reaction mechanism, and given initial conditions, mass 

and energy conservation equations for a reactive gaseous 

mixture are solved:  
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A sparse Analytical Jacobian approach [6] is employed to 

speed-up the calculation at the reactor level: using this 

technology, the code exhibits almost linear CPU time scaling 

with reaction mechanism size, as reported in Figure 12, 

which corresponds to a speed up of up to three orders of 

magnitude in comparison with the widely-adopted dense 

integration approach. SpeedCHEM has been the first 

package employing this technology to be openly available as 

a standalone library for non-commercial purposes. 

Fast exponential functions. The benefits of a sparse Jacobian 

are not too large for CFD-sized reaction mechanisms of 50-

100 species most relevant for engine simulations. In these 

cases as from Figure 13, the overall Jacobian sparsity may 

be not larger than 50-70%, and relevant CPU time is spent 

evaluating the mechanism’s kinetic functions. For all 

kinetics and gas thermodynamics functions, FRESCO 

employs a fast exponential/logarithm evaluation method 

coupled with a high-order polynomial tabulation and 

interpolation approach [9]. 

 

 
Figure 12. SpeedCHEM IDT calculation CPU time performance 

vs. reaction mechanism size, compared with the standard dense 

solver approach. 

 
Figure 13. Mechanism sparsity patterns vs. number of species. 

 
Figure 14. Performance and accuracy of fast exp/log computation 

and storage-retrieval with piecewise polynomial reconstruction. 

Performance expressed as ratios w/ corresponding quantities in the 

standard setup (intrinsics exp/log, no tab/interp). 

Using this approach, time for the evaluation of complex 

exponential-based kinetics functions was reduced by up to 

two orders of magnitude, and overall CPU time for chemical 

kinetics integrations was reduced by up to -82.3% for the 

mid-sized ERC multiChem mechanism (Figure 14). The 

methodology also allows fast evaluation of thermodynamic 

functions from the Equation of State as the polynomial 

formulation allows both function value and its derivatives to 

be evaluated at the same time. 

Dynamic Adaptive Chemistry via PCA-based kd-tree 

partitioning. Significant computational speed-up computing 

chemistry source terms is achieved by simplifying the 

problem at the domain level: cells with similar 

thermodynamic state are grouped into homogeneous 

reactors, so the number of actual chemical kinetics 

integrations is reduced. We developed a new ‘Dynamic 

Adaptive Chemistry’ (DAC) method which solves two 

major challenges: 1) it avoids tabulation storage needs by 

using an on-the-fly procedure  (pressure dependency during 

the engine stroke limits data re-usability). 2) fuel behavior: 

user-defined species trackers or higher-level quantities like 

the equivalence ratio are avoided, which limit DAC benefits 

in multiple and multi-component fuel cases.  

The DAC procedure implemented in FRESCO has three 

stages, as in Figure 15:  

1) reduce the model size, using an appropriate and fast 

clustering algorithm; compute the thermodynamic 

states corresponding to each cluster center;  

2) solve chemical kinetics IVP at each cluster center state;  

3) remap solution back to the full model. 

To accurately identify homogeneous cell clusters, FRESCO 

employs the full chemistry states space, with size ns+1, so 

no simplification of the chemical model is needed. A new 

variant of the k-means was designed to make clustering of 

such large-dimensionality datasets possible, accurate and 

fast. The algorithm employs recursive kd-tree structures 

(Figure 16) both to generate an accurate initial partition of 

the dataset, and to accelerate the k-means iterations using 

nearest-neighbor constraining across the iterates [10]. 

Reliable temperature (εT<10K) and species mass fraction 
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Figure 15. Schematic reproducing the DAC procedure. 

 
Figure 16: recursive kd-tree structure. 

(εY<1e-4) bins were demonstrated to provide CPU time 

reductions for chemistry of up to two orders of magnitude 

regardless of reaction mechanism size.  

Figure 17 reports a comparison between the full chemistry 

approach and the fast kd-tree based high-dimensional 

clustering method for chemistry in a 3D conventional diesel 

combustion simulation in the Sandia 1.9L light-duty engine 

with a 93k cells sector mesh using the ERC-PRF mechanism 

(ns=47, nr=142) [11]. CPU times for chemistry were 7.03h 

(clustering) vs. 24.54h (full chemistry).  

 
Figure 17. Comparison between full-chemistry and clustering 

solutions for a 3d sector CDC case. 

 

Conclusions 
 

We introduced FRESCO, a parallel finite-volume simulation 

platform for multidimensional engine modeling written in 

modern Fortran. The platform employs the object oriented  

approach to hide computational machinery and numerics 

within field operations, to simplify the engine modeler work. 

State-of-the-art spray and chemistry models are 

implemented, to approach grid independency with limited 

computational demands. Good parallel scaling was 

demonstrated up to 256 processors (~3k cells/cpu) for a full-

engine model simulations. The code is successfully 

employed for diesel engine combustion research with full-

cycle simulations in realistic geometries.  

 

 
Figure 18.  FRESCO application to diesel engine modeling. 
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